

U.S. Department of Energy

CHP Subcontractors Coordination Review Meeting

April 22, 2004 Oak Ridge National Laboratory's Washington D.C. Office

Name of Contract and Subcontractors

Market Potential for Opportunity Fuels in DER/CHP Applications

Paul L. Lemar, Jr.
President
703-356-1300 x 204
pll@rdcnet.com

Description of Task(s)

 Objective: assess the use of alternative or opportunity fuels in DER/CHP applications Opportunity Fuel: Any fuel that has the potential to be used for economically-viable power generation, but is not traditionally used for this purpose

- Approach:
 - 1. Collect and evaluate opportunity fuel information
 - 2. Explore DER/CHP technology options
 - 3. Develop potential market estimates and make recommendations

- Task 1. Collect Opportunity Fuel Information (Completed)
 - Reviewed previous studies
 - Collected information on opportunity fuels
 - Current status
 - Market considerations
 - Availability
 - Cost (acquisition, transportation, storage, processing)
 - Quality (Btus per cfm/pound, sulfur content, etc.)
 - Environmental issues
 - Screened fuels and selected the top fuels with the most potential for DER/CHP projects for further analysis

Opportunity Fuel	Availability	Heating Value	Fuel Cost	Equipment Cost	Emissions / Environment	DER/CHP Potential	Rating	Limitations	
Anaerobic Digester Gas	•	•		•	•	5.0 Need anaerobic digester			
Biomass (General)	•	•		•	•	•	4.0	Cost, usually cofired, broad cat.	
Biomass Gas		•	•	0	•		4.0	Gasifiers extremely expensive	
Black Liquor	0				0	•	3.0	Most BL already used up by mills	
Blast Furnace Gas	0	0	•	•	•	0	2.0	Limited availability, low Btu	
Coalbed Methane	•	•	•	•		•	5.0	Coal mines - lack CHP demand	
Coke Oven Gas	0	•	•	•	0	•	3.0	Availability - most already used	
Crop Residues	•	•	0	•	•	•	3.0	Difficulty in gathering/transport	
Food Processing Waste	•	•	•	•	•	•	4.0	Limited market, broad category	
Industrial VOC's	0	0	•	•	0	•	2.0	Must be used w/ NG turbine	
Landfill Gas	•	•	•	•	•	•	4.5	Landfills – little demand for CHP	
Municipal Solid Waste	•	0	•	0	•	•	3.0	Low heating value, contaminants	
Orimulsion	0	•	•	•	•	•	2.5	Orimulsion not available in U.S.	
Petroleum Coke	•	•	•	•	0	0	3.5	Many contaminants; large apps	
Sludge Waste		0	•	0	•	0	2.5	Low heating value, contaminants	
Textile Waste	•	•	•	•	0	0	3.0	Must be cofired; larger apps	
Tire-Derived Fuel		•		•	•	•	4.0	Best suited for large apps	
Wellhead Gas	•	•	•	•	•	•	4.5	Oil / gas wells – no CHP demand	
Wood (Forest Residues)				•	•		4.0	Fuel can be expensive	
Wood Waste		•	•			•	4.5	Waste may have contaminants	

Fuel	Potential Thermal Output (Estimated, Trillion Btu/yr)	Potential Electric Capacity (Estimated, GW)		
Anaerobic Digester Gas	1,000	38		
Biomass Gas	3,000	110		
Coalbed Methane	53	2		
Landfill Gas	160	6		
Tire-Derived Fuel	40	2		
Wellhead Gas	3	0.1		
Wood (Harvested)	270	10		
Urban Wood Waste	220	8		

- •The potential thermal output was calculated assuming 40 percent thermal efficiency and a 6,000 hour operating year
- •Potential electric capacity was calculated assuming a 30 percent electric efficiency

- Task 2. Evaluate CHP Technology Options (Completed)
 - CHP Technology price, performance, and emissions parameters were evaluated (new and retrofit technologies that can use the opportunity fuels)
 - Microturbines

- Steam turbine systems

Reciprocating engines

- Fuel cells

- Combustion turbines
- In some cases, existing technology can be used with little modification and no additional maintenance
- In other cases, equipment and maintenance costs can double what they were "off-the-shelf" (with natural gas or coal)
- Auxiliary equipment (gasifiers, filtration equipment, etc.) was also considered

- Impact of Opportunity Fuel on DER Technology Cost and Performance
 - The cost to modify or obtain DER/CHP equipment to run on opportunity fuels varies greatly depending on the application and size (for this project the size range is <1 to 50 MW)
 - Equipment manufacturers (Alstom, Dresser-Rand, Waukesha, Capstone, etc.) were contacted, and estimates were obtained
 - Example: A new gas turbine configured to run on landfill gas or anaerobic digester gas would require the following modifications:
 - New combustor
- Larger manifolds
- Modified nozzles
- More filters/cleaning equipment

In addition, the power output is reduced. Overall, equipment costs are doubled for low-Btu fuels (per kW) and variable maintenance costs are increased by 50-100 percent (per kWh)

Fuel	Cost	Steam Turbine*	Gas Turbine	Combined Cycle	Recip. Engine	Microturbine	Fuel Cell
	Modify Existing Equip. (\$/kW)	\$70 - \$170	n/a	n/a	\$170 - \$390	\$0	n/a
Anaerobic Digester Gas	New Equipment (\$/kW)	\$650 - \$1,650	\$800 - \$2,100	\$725 - \$2,500	\$670 - \$1,540	\$970 - \$2,030	\$4,700 - \$6,000
	Maintenance (\$/kWh)	\$0.006 - \$0.013	\$0.006 - \$0.011	\$0.007 - \$0.016	\$0.013 - \$0.039	\$0.008 - \$0.017	\$0.012 - \$0.018
Biomass Gas**	Modify Existing Equip. (\$/kW)	\$600 - \$1,000	\$600 - \$1,000	\$600 - \$1,000	\$600 - \$1,000	\$600 - \$1,000	n/a
	New Equipment (\$/kW)	\$1,260 - \$2,650	\$1,150 - \$2,320	\$1,150 - \$2,760	\$1,260 - \$2,540	\$1,590 - \$3,090	\$5,330 - \$7,050
	Maintenance (\$/kWh)	\$0.006 - \$0.014	\$0.005 - \$0.011	\$0.006 - \$0.014	\$0.009 - \$0.026	\$0.007 - \$0.015	\$0.013 - \$0.021
Coalbed Methane	Modify Existing Equip. (\$/kW)	\$0	\$0	\$0	\$0	\$0	n/a
	New Equipment (\$/kW)	\$600 - \$1,500	\$500 - \$1,200	\$500 - \$1,600	\$600 - \$1,400	\$900 - \$1,900	\$4,300 - \$5,500
	Maintenance (\$/kWh)	\$0.005 - \$0.011	\$0.004 - \$0.008	\$0.005 - \$0.011	0.008 - \$0.023	\$0.006 - \$0.012	\$0.011 - \$0.017
Landfill Gas	Modify Existing Equip. (\$/kW)	\$70 - \$170	n/a	n/a	\$170 - \$390	\$0	n/a
	New Equipment (\$/kW)	\$650 - \$1,650	\$800 - \$2,100	\$725 - \$2,500	\$670 - \$1,540	\$970 - \$2,030	\$4,700 - \$6,000
	Maintenance (\$/kWh)	\$0.006 - \$0.013	\$0.006 - \$0.011	\$0.007 - \$0.016	\$0.013 - \$0.039	\$0.008 - \$0.017	\$0.012 - \$0.018
Tire-Derived Fuel	Modify Existing Equip. (\$/kW)	\$0					
	New Equipment (\$/kW)	\$700 - \$1,800	n/a	n/a	n/a	n/a	n/a
	Maintenance (\$/kWh)	\$0.006 - \$0.014					
Wellhead Gas	Modify Existing Equip. (\$/kW)					\$0	
	New Equipment (\$/kW)	n/a	n/a	n/a	n/a	\$900 - \$1,900	n/a
	Maintenance (\$/kWh)					\$0.008 - \$0.017	
Wood (Forest Residues)	Modify Existing Equip. (\$/kW)	\$140 - \$420					
	New Equipment (\$/kW)	\$700 - \$1,800	n/a	n/a	n/a	n/a	n/a
	Maintenance (\$/kWh)	\$0.006 - \$0.014					
Urban Wood Waste	Modify Existing Equip. (\$/kW)	\$150 - \$440					
	New Equipment (\$/kW)	\$740 - \$1890	n/a	n/a	n/a	n/a	n/a
	Maintenance (\$/kWh)	\$0.007 - \$0.015					

*including boiler
**including gasifier

- Task 3. Develop Potential Market Impacts and Make Recommendations (In Progress)
 - A more in-depth analysis of availability and installed capacity for the 8 chosen opportunity fuels
 - The availability of each fuel's resources is examined on a state-by-state or even site-by-site in some cases

FY03 Deliverables and Availability

Deliverable	<u>Status</u>
Task 1 Status Report	Completed
Task 1 Draft Report	Completed
Task 2 Status Report	Completed
Task 2 Draft Report	Completed
Task 3 Status Report	Planned
Task 3 Draft Report	Planned
Draft/Final Report/PPT	Planned
Task 2 Status Report Task 2 Draft Report Task 3 Status Report Task 3 Draft Report	Completed Completed Planned Planned

 All deliverables will be available in PDF format for both hard copy and electronic delivery

Coordination with Stakeholder Groups and Other Project Teams

- Presented Interim Results to GTA
- Providing Draft Results to CHP Center Candidate
- Other Stakeholder Interactions being Considered

FY04-05 Timeline

